import numpy as np
import torch
from torch.optim import Adam
import gym
import time
import spinup.algos.pytorch.ppo.core as core
from spinup.utils.logx import EpochLogger
from spinup.utils.mpi_pytorch import setup_pytorch_for_mpi, sync_params, mpi_avg_grads
from spinup.utils.mpi_tools import mpi_fork, mpi_avg, proc_id, mpi_statistics_scalar, num_procs
class PPOBuffer:
"""
A buffer for storing trajectories experienced by a PPO agent interacting
with the environment, and using Generalized Advantage Estimation (GAE-Lambda)
for calculating the advantages of state-action pairs.
"""
def __init__(self, obs_dim, act_dim, size, gamma=0.99, lam=0.95):
self.obs_buf = np.zeros(core.combined_shape(size, obs_dim), dtype=np.float32)
self.act_buf = np.zeros(core.combined_shape(size, act_dim), dtype=np.float32)
self.adv_buf = np.zeros(size, dtype=np.float32)
self.rew_buf = np.zeros(size, dtype=np.float32)
self.ret_buf = np.zeros(size, dtype=np.float32)
self.val_buf = np.zeros(size, dtype=np.float32)
self.logp_buf = np.zeros(size, dtype=np.float32)
self.gamma, self.lam = gamma, lam
self.ptr, self.path_start_idx, self.max_size = 0, 0, size
def store(self, obs, act, rew, val, logp):
"""
Append one timestep of agent-environment interaction to the buffer.
"""
assert self.ptr < self.max_size # buffer has to have room so you can store
self.obs_buf[self.ptr] = obs
self.act_buf[self.ptr] = act
self.rew_buf[self.ptr] = rew
self.val_buf[self.ptr] = val
self.logp_buf[self.ptr] = logp
self.ptr += 1
def finish_path(self, last_val=0):
"""
Call this at the end of a trajectory, or when one gets cut off
by an epoch ending. This looks back in the buffer to where the
trajectory started, and uses rewards and value estimates from
the whole trajectory to compute advantage estimates with GAE-Lambda,
as well as compute the rewards-to-go for each state, to use as
the targets for the value function.
The "last_val" argument should be 0 if the trajectory ended
because the agent reached a terminal state (died), and otherwise
should be V(s_T), the value function estimated for the last state.
This allows us to bootstrap the reward-to-go calculation to account
for timesteps beyond the arbitrary episode horizon (or epoch cutoff).
"""
path_slice = slice(self.path_start_idx, self.ptr)
rews = np.append(self.rew_buf[path_slice], last_val)
vals = np.append(self.val_buf[path_slice], last_val)
# the next two lines implement GAE-Lambda advantage calculation
deltas = rews[:-1] + self.gamma * vals[1:] - vals[:-1]
self.adv_buf[path_slice] = core.discount_cumsum(deltas, self.gamma * self.lam)
# the next line computes rewards-to-go, to be targets for the value function
self.ret_buf[path_slice] = core.discount_cumsum(rews, self.gamma)[:-1]
self.path_start_idx = self.ptr
def get(self):
"""
Call this at the end of an epoch to get all of the data from
the buffer, with advantages appropriately normalized (shifted to have
mean zero and std one). Also, resets some pointers in the buffer.
"""
assert self.ptr == self.max_size # buffer has to be full before you can get
self.ptr, self.path_start_idx = 0, 0
# the next two lines implement the advantage normalization trick
adv_mean, adv_std = mpi_statistics_scalar(self.adv_buf)
self.adv_buf = (self.adv_buf - adv_mean) / adv_std
data = dict(obs=self.obs_buf, act=self.act_buf, ret=self.ret_buf,
adv=self.adv_buf, logp=self.logp_buf)
return {k: torch.as_tensor(v, dtype=torch.float32) for k,v in data.items()}
def ppo(env_fn, actor_critic=core.MLPActorCritic, ac_kwargs=dict(), seed=0,
steps_per_epoch=4000, epochs=50, gamma=0.99, clip_ratio=0.2, pi_lr=3e-4,
vf_lr=1e-3, train_pi_iters=80, train_v_iters=80, lam=0.97, max_ep_len=1000,
target_kl=0.01, logger_kwargs=dict(), save_freq=10):
"""
Proximal Policy Optimization (by clipping),
with early stopping based on approximate KL
Args:
env_fn : A function which creates a copy of the environment.
The environment must satisfy the OpenAI Gym API.
actor_critic: The constructor method for a PyTorch Module with a
``step`` method, an ``act`` method, a ``pi`` module, and a ``v``
module. The ``step`` method should accept a batch of observations
and return:
=========== ================ ======================================
Symbol Shape Description
=========== ================ ======================================
``a`` (batch, act_dim) | Numpy array of actions for each
| observation.
``v`` (batch,) | Numpy array of value estimates
| for the provided observations.
``logp_a`` (batch,) | Numpy array of log probs for the
| actions in ``a``.
=========== ================ ======================================
The ``act`` method behaves the same as ``step`` but only returns ``a``.
The ``pi`` module's forward call should accept a batch of
observations and optionally a batch of actions, and return:
=========== ================ ======================================
Symbol Shape Description
=========== ================ ======================================
``pi`` N/A | Torch Distribution object, containing
| a batch of distributions describing
| the policy for the provided observations.
``logp_a`` (batch,) | Optional (only returned if batch of
| actions is given). Tensor containing
| the log probability, according to
| the policy, of the provided actions.
| If actions not given, will contain
| ``None``.
=========== ================ ======================================
The ``v`` module's forward call should accept a batch of observations
and return:
=========== ================ ======================================
Symbol Shape Description
=========== ================ ======================================
``v`` (batch,) | Tensor containing the value estimates
| for the provided observations. (Critical:
| make sure to flatten this!)
=========== ================ ======================================
ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object
you provided to PPO.
seed (int): Seed for random number generators.
steps_per_epoch (int): Number of steps of interaction (state-action pairs)
for the agent and the environment in each epoch.
epochs (int): Number of epochs of interaction (equivalent to
number of policy updates) to perform.
gamma (float): Discount factor. (Always between 0 and 1.)
clip_ratio (float): Hyperparameter for clipping in the policy objective.
Roughly: how far can the new policy go from the old policy while
still profiting (improving the objective function)? The new policy
can still go farther than the clip_ratio says, but it doesn't help
on the objective anymore. (Usually small, 0.1 to 0.3.) Typically
denoted by :math:`\epsilon`.
pi_lr (float): Learning rate for policy optimizer.
vf_lr (float): Learning rate for value function optimizer.
train_pi_iters (int): Maximum number of gradient descent steps to take
on policy loss per epoch. (Early stopping may cause optimizer
to take fewer than this.)
train_v_iters (int): Number of gradient descent steps to take on
value function per epoch.
lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
close to 1.)
max_ep_len (int): Maximum length of trajectory / episode / rollout.
target_kl (float): Roughly what KL divergence we think is appropriate
between new and old policies after an update. This will get used
for early stopping. (Usually small, 0.01 or 0.05.)
logger_kwargs (dict): Keyword args for EpochLogger.
save_freq (int): How often (in terms of gap between epochs) to save
the current policy and value function.
"""
# Special function to avoid certain slowdowns from PyTorch + MPI combo.
setup_pytorch_for_mpi()
# Set up logger and save configuration
logger = EpochLogger(**logger_kwargs)
logger.save_config(locals())
# Random seed
seed += 10000 * proc_id()
torch.manual_seed(seed)
np.random.seed(seed)
# Instantiate environment
env = env_fn()
obs_dim = env.observation_space.shape
act_dim = env.action_space.shape
# Create actor-critic module
ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs)
# Sync params across processes
sync_params(ac)
# Count variables
var_counts = tuple(core.count_vars(module) for module in [ac.pi, ac.v])
logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n'%var_counts)
# Set up experience buffer
local_steps_per_epoch = int(steps_per_epoch / num_procs())
buf = PPOBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)
# Set up function for computing PPO policy loss
def compute_loss_pi(data):
obs, act, adv, logp_old = data['obs'], data['act'], data['adv'], data['logp']
# Policy loss
pi, logp = ac.pi(obs, act)
ratio = torch.exp(logp - logp_old)
clip_adv = torch.clamp(ratio, 1-clip_ratio, 1+clip_ratio) * adv
loss_pi = -(torch.min(ratio * adv, clip_adv)).mean()
# Useful extra info
approx_kl = (logp_old - logp).mean().item()
ent = pi.entropy().mean().item()
clipped = ratio.gt(1+clip_ratio) | ratio.lt(1-clip_ratio)
clipfrac = torch.as_tensor(clipped, dtype=torch.float32).mean().item()
pi_info = dict(kl=approx_kl, ent=ent, cf=clipfrac)
return loss_pi, pi_info
# Set up function for computing value loss
def compute_loss_v(data):
obs, ret = data['obs'], data['ret']
return ((ac.v(obs) - ret)**2).mean()
# Set up optimizers for policy and value function
pi_optimizer = Adam(ac.pi.parameters(), lr=pi_lr)
vf_optimizer = Adam(ac.v.parameters(), lr=vf_lr)
# Set up model saving
logger.setup_pytorch_saver(ac)
def update():
data = buf.get()
pi_l_old, pi_info_old = compute_loss_pi(data)
pi_l_old = pi_l_old.item()
v_l_old = compute_loss_v(data).item()
# Train policy with multiple steps of gradient descent
for i in range(train_pi_iters):
pi_optimizer.zero_grad()
loss_pi, pi_info = compute_loss_pi(data)
kl = mpi_avg(pi_info['kl'])
if kl > 1.5 * target_kl:
logger.log('Early stopping at step %d due to reaching max kl.'%i)
break
loss_pi.backward()
mpi_avg_grads(ac.pi) # average grads across MPI processes
pi_optimizer.step()
logger.store(StopIter=i)
# Value function learning
for i in range(train_v_iters):
vf_optimizer.zero_grad()
loss_v = compute_loss_v(data)
loss_v.backward()
mpi_avg_grads(ac.v) # average grads across MPI processes
vf_optimizer.step()
# Log changes from update
kl, ent, cf = pi_info['kl'], pi_info_old['ent'], pi_info['cf']
logger.store(LossPi=pi_l_old, LossV=v_l_old,
KL=kl, Entropy=ent, ClipFrac=cf,
DeltaLossPi=(loss_pi.item() - pi_l_old),
DeltaLossV=(loss_v.item() - v_l_old))
# Prepare for interaction with environment
start_time = time.time()
o, ep_ret, ep_len = env.reset(), 0, 0
# Main loop: collect experience in env and update/log each epoch
for epoch in range(epochs):
for t in range(local_steps_per_epoch):
a, v, logp = ac.step(torch.as_tensor(o, dtype=torch.float32))
next_o, r, d, _ = env.step(a)
ep_ret += r
ep_len += 1
# save and log
buf.store(o, a, r, v, logp)
logger.store(VVals=v)
# Update obs (critical!)
o = next_o
timeout = ep_len == max_ep_len
terminal = d or timeout
epoch_ended = t==local_steps_per_epoch-1
if terminal or epoch_ended:
if epoch_ended and not(terminal):
print('Warning: trajectory cut off by epoch at %d steps.'%ep_len, flush=True)
# if trajectory didn't reach terminal state, bootstrap value target
if timeout or epoch_ended:
_, v, _ = ac.step(torch.as_tensor(o, dtype=torch.float32))
else:
v = 0
buf.finish_path(v)
if terminal:
# only save EpRet / EpLen if trajectory finished
logger.store(EpRet=ep_ret, EpLen=ep_len)
o, ep_ret, ep_len = env.reset(), 0, 0
# Save model
if (epoch % save_freq == 0) or (epoch == epochs-1):
logger.save_state({'env': env}, None)
# Perform PPO update!
update()
# Log info about epoch
logger.log_tabular('Epoch', epoch)
logger.log_tabular('EpRet', with_min_and_max=True)
logger.log_tabular('EpLen', average_only=True)
logger.log_tabular('VVals', with_min_and_max=True)
logger.log_tabular('TotalEnvInteracts', (epoch+1)*steps_per_epoch)
logger.log_tabular('LossPi', average_only=True)
logger.log_tabular('LossV', average_only=True)
logger.log_tabular('DeltaLossPi', average_only=True)
logger.log_tabular('DeltaLossV', average_only=True)
logger.log_tabular('Entropy', average_only=True)
logger.log_tabular('KL', average_only=True)
logger.log_tabular('ClipFrac', average_only=True)
logger.log_tabular('StopIter', average_only=True)
logger.log_tabular('Time', time.time()-start_time)
logger.dump_tabular()
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--env', type=str, default='HalfCheetah-v2')
parser.add_argument('--hid', type=int, default=64)
parser.add_argument('--l', type=int, default=2)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--seed', '-s', type=int, default=0)
parser.add_argument('--cpu', type=int, default=4)
parser.add_argument('--steps', type=int, default=4000)
parser.add_argument('--epochs', type=int, default=50)
parser.add_argument('--exp_name', type=str, default='ppo')
args = parser.parse_args()
mpi_fork(args.cpu) # run parallel code with mpi
from spinup.utils.run_utils import setup_logger_kwargs
logger_kwargs = setup_logger_kwargs(args.exp_name, args.seed)
ppo(lambda : gym.make(args.env), actor_critic=core.MLPActorCritic,
ac_kwargs=dict(hidden_sizes=[args.hid]*args.l), gamma=args.gamma,
seed=args.seed, steps_per_epoch=args.steps, epochs=args.epochs,
logger_kwargs=logger_kwargs)